
2026/02/03 23:47 1/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

installer MQTT bis --- A tester ----

Raspberry Pi - Installer un broker (serveur) MQTT Mosquitto

[Mise à jour le 1/8/2022] <html>En cours de rédaction</html>

Sources
<html><a href=“https://mntolia.com/fundamentals-mqtt/”
target=“_blank”>Fundamentals of MQTT</html>
Hackable Magazine n°26 : “Faites communiquer vos projets simplement avec MQTT”
Généralités sur <html><a href=“https://fr.wikipedia.org/wiki/MQTT”
target=“_blank”>Wikipédia</html>
Site de référence <html><a href=“https://mqtt.org/”
target=“_blank”>mqtt.org</html>
Eclipse <html><a href=“https://mosquitto.org/”
target=“_blank”>Mosquitto</html> An open source MQTT broker
Série d'articles sur <html><a href=“https://www.hivemq.com/mqtt/”
target=“_blank”>hivemq.com</html>
<html><a href=“http://www.steves-internet-guide.com/mqtt-websockets/”
target=“_blank”>Using MQTT Over WebSockets with Mosquitto</html>

Lectures connexes
Wiki Arduino - Mettre en œuvre un client MQTT sur un EP8266 (ESP32) Feather Huzzah,
MKR1010 ou Arduino Uno Wifi 2
Wiki Réseau - Tester un broker Mosquitto avec MQTTlens
Wiki Raspberry Pi sous Linux - Créer un flux de données et une interface utilisateur avec
Node-RED
Wiki Web - Créer un client MQTT (Websockets) avec Eclipse Paho
Wiki Raspberry Pi sous Linux - Sauvegarder ses données dans une base TSDB (InfluxdB)

Mots-clés

client1), serveur 2), broker MQTT3), subscriber4), publisher5), topic MQTT6), payload7)(charge
utile), joker8), sécurité, QoS9).

1. MQTT (généralités)

Pour répondre à la problématique du nombre grandissant d’objets connectés qui vont faire leur
apparition sur la toile (selon une étude Gartner : près de 26 milliards d’objets connectés seront sur
Internet d’ici 2020), l’IoT (Internet Of Things), s’est doté d’un nouveau standard : MQTT (Message
Queuing Telemetry Transport).

Pourquoi MQTT et pas un autre ?

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=raspberrypi:linux:raspilinux
https://mntolia.com/fundamentals-mqtt/
https://fr.wikipedia.org/wiki/MQTT
https://mqtt.org/
https://mosquitto.org/
https://www.hivemq.com/mqtt/
http://www.steves-internet-guide.com/mqtt-websockets/
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=reseaux:outils:mqttlens
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=raspberrypi:linux:nodered
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=raspberrypi:linux:nodered
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=web:eclipsepaho
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=raspberrypi:linux:influxdb_nr

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

MQTT est ouvert, simple, léger et facile à mettre en œuvre. Il est idéal pour répondre aux besoins
suivants :

Particulièrement adapté pour utiliser une très faible bande passante,
Idéal pour l’utilisation sur les réseaux sans fil,
Faible consommateur en énergie,
Très rapide, il permet un temps de réponse supérieur aux autres standards du web actuel,
Permet une forte fiabilité si nécessaire,
Nécessite peu de ressources processeurs et de mémoires.

1.1 Historique

Le protocole MQTT (MQ Telemetry Transport) trouve ses origines en 1999 dans les travaux de Andy
Standford-Clark et Arlen Nipper, alors qu'ils travaillaient pour IBM au développement d'un
protocole pour une utilisation industrielle de télémétrie en lien avec l'industrie pétrolière.

1.2 Principes

1.2.1 Organisation et communication

<callout type=“primary” icon=“true”>MQTT est un service de publication/abonnement TCP/IP
simple et extrêmement léger. Il fonctionne sur le principe client/serveur.</callout>

Le serveur ou courtier, nommé broker, va collecter des informations que les éditeurs
(publishers) vont lui transmettre. Certaines informations collectées par le broker seront renvoyées à
certains abonnés (subscribers) ayant préalablement fait la demande au broker. Un client peut être
à la fois éditeur et abonné.

Le principe d’échange est très proche de celui de Twitter. Les messages sont envoyés par les éditeurs
sur un canal d'information appelé topic. Ces messages peuvent être lus par les abonnés. Les topics
peuvent avoir une hiérarchie qui permet de sélectionner finement les informations que l’on désire.

<callout type=“primary” icon=“true”>Les messages envoyés par les éditeurs peuvent être de toute
sorte, mais ne peuvent excéder une taille de 256 Mo bien que dans les mises en œuvre réelles, le
maximum soit de 2 à 4 Ko.</callout>

 Résumé
<callout type=“success” icon=“true”>MQTT fonctionne sur TCP/IP et fait intervenir deux types
d'acteurs : des clients (subscriber, publisher) pouvant à la fois envoyer et recevoir des messages
et un broker MQTT chargé de recevoir tous les messages et de les transmettre aux clients inscrits. Le
principal travail du broker est de servir de relai. Pour cela, il maintient un répertoire de type “qui
veut quoi” sous la forme de sujets ou topics. </callout>

2026/02/03 23:47 3/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

1.2.2 Les topics

<callout type=“primary” icon=“true”>Un topic est une simple chaine de caractères, mais qui peut
être structurée hiérarchiquement.
Exemple : maison/salon/temperature</callout>

Exemple
Le topic “maison/salon/temperature” communiquera la température du salon (la sonde de
température présente dans le salon publiera régulièrement la température relevée sur ce topic).

Les trois clients établissent une connexion
TCP avec le broker. Les clients B et C
souscrivent au topic temperature.

Le Client A publie sur le topic temperature une valeur de
22,5°. Le broker propage le message à tous les clients
ayant préalablement souscrit au topic Temperature.

<callout type=“primary” icon=“true”>Cette écriture hiérarchique permet à un abonné de souscrire à
un ensemble de topics en utilisant des caractères joker (+, #).</callout>

Le caractère joker +
+ est le joker pour un unique niveau hiérarchique. Un client souscrivant à “maison/+/temp”
recevra les messages adressés par d'autres clients aux topics :

“maison/salon/temp”
“maison/garage/temp”
“maison/couloir/temp”

mais pas :

“maison/salon/hum”
“jardin/temp”

Le caractère joker #
Le # est un joker multiniveau s'utilisant toujours après un / et en dernier caractère. Il est destiné à
remplacer n'importe quel niveau supérieur dans le topic.
“maison/#” correspondra aux topics :

“maison/salon/temp”
“maison/salon/hygro”
“maison/rdc/salon/hum”

mais pas :

“annexe/couloir/hum”
“jardin/temp”

Le caractère joker $
Le joker $ ne peut pas être utilisé pour publier. Il précède les topics concernant les statistiques
internes du broker. Son utilisation est illustrée au paragraphe Le broker Mosquitto.

<callout type=“warning” icon=“true”>Voir les bonnes pratiques d'écriture des topics sur
<html><a href=“https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/”

https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

target=“_blank”>hivemq.com</html></callout>

1.2.3 Sécurité

Les données IoT échangées peuvent s’avérer très critiques, c’est pourquoi il est possible de sécuriser
les échanges à plusieurs niveaux :

Transport en SSL/TLS,
Authentification par certificats SSL/TLS,
Authentification par login/mot de passe.

1.2.4 Qualité de service (QoS)

MQTT intègre en natif la notion de QoS. En effet, le publisher à la possibilité de définir la qualité de
son message.

Trois niveaux sont possibles :

Un message de QoS niveau 0 « Au plus une fois ». Le niveau de QoS minimal est zéro. Ce
niveau de service garantit une livraison au mieux. Il n'y a aucune garantie de livraison. Le
destinataire n'accuse pas réception du message et le message n'est pas stocké ni retransmis
par l'expéditeur. Le niveau de QoS 0 est souvent appelé “fire and forget”. Ce niveau de
service doit être utilisé si:

Internet est fiable.
La perte de message à petite échelle n'a pas d'importance.
Les messages doivent être livrés rapidement.

Un message de QoS niveau 1 « Au moins une fois ». Le niveau de qualité de service 1
garantit qu'un message est remis au moins une fois au destinataire. L'expéditeur stocke le
message jusqu'à ce qu'il reçoive du destinataire un paquet PUBACK qui accuse réception du
message. Il est possible qu'un message soit envoyé ou remis plusieurs fois. Le niveau 1 de QoS
est plus lent que le niveau 0. Ce niveau de service doit être utilisé si:

Le client ou le courtier doit recevoir tous les messages.
Les messages en double peuvent être traités correctement.

<callout type=“primary” icon=“true”>MQTT QoS niveau 1 est utilisé dans les courtiers MQTT
commerciaux comme AWS IoT, Azure, etc.</callout>

Un message de QoS niveau 2 « Exactement une fois ». QoS 2 est le niveau de service le plus
élevé dans MQTT. Ce niveau garantit que chaque message est reçu une seule fois par les
destinataires prévus. QoS 2 est le niveau de qualité de service le plus sûr et le plus lent. Ce
niveau de service doit être utilisé si:

Les messages peuvent être délivrés lentement.
La duplication des messages provoque des problèmes.

2026/02/03 23:47 5/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

<callout type=“primary” icon=“true”>La plupart des courtiers MQTT commerciaux ne prennent pas
en charge le niveau de QoS 2 car il est lent et consomme plus de ressources.</callout>

1.3 Structure d'un paquet MQTT

Source : <html><a
href=“http://www.steves-internet-guide.com/mqtt-protocol-messages-overview/”
target=“_blank”>Comprendre la structure des paquets du protocole MQTT</html>

Le format de paquet ou de message MQTT se compose d'un en- tête fixe de 2 octets (toujours
présent) + en -tête de variable (pas toujours présent) + charge utile (pas toujours présent).

2. Le broker Mosquitto

 Eclipse Mosquitto est un courtier de messages (broker) open source (sous licence EPL / EDL) qui
implémente les versions 3.1 et 3.1.1 du protocole MQTT. Mosquitto est léger et convient à une
utilisation sur tous les appareils, des ordinateurs monocarte basse consommation aux serveurs
complets.

Le protocole MQTT fournit une méthode légère pour effectuer la messagerie en utilisant un modèle de
publication / abonnement. Cela le rend approprié pour la messagerie Internet of Things, par
exemple avec des capteurs de faible puissance ou des appareils mobiles tels que des téléphones, des
ordinateurs intégrés ou des microcontrôleurs.

Le projet Mosquitto fournit également une bibliothèque C pour l’implémentation des clients MQTT,
ainsi que les très populaires clients MQTT mosquitto_pub et mosquitto_sub.

Mosquitto fait partie de la <html>Fondation
Eclipse</html> et est un projet de <html><a href=“https://iot.eclipse.org/”
target=“_blank”>iot.eclipse.org</html>.

3. Installation et mise en oeuvre basique

3.1 Sur un Raspberry Pi

3.1.1 Installation

Mise à jour

*.bash

sudo apt update && sudo apt upgrade -y

http://www.steves-internet-guide.com/mqtt-protocol-messages-overview/
https://www.eclipse.org/
https://iot.eclipse.org/
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=0

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

Installation du broker

*.bash

sudo apt install mosquitto -y

Installation des utilitaires en ligne de commande pour tester le broker

*.bash

sudo apt install mosquitto-clients -y

Affichage de la version installée

*.bash

mosquitto_sub -v -h localhost -t '$SYS/broker/version'

Exemple de résultat attendu
$SYS/broker/version mosquitto version 2.0.11

-v, –verbose : message imprimé sous la forme de sujet.
-h, –host : Spécifie l'hôte auquel se connecter. La valeur par défaut est localhost.
-t, –topic : le sujet MQTT auquel on s'abonne.

<callout type=“info” icon=“true”>On remarque que l'outil mosquitto_sub ne rend pas la main et
reste connecté au broker (carré noir). C'est le principe même du fonctionnement de MQTT lors d'un
abonnement à un topic, rester à l'écoute. Pour se déconnecter, entrer le raccourci CTRL-C.</callout>

Quelques topics spécifiques

“$SYS/broker/clients/connected” Le nombre de clients connectés au broker.
“$SYS/broker/clients/maximum” Le nombre maximum de clients connectés ayant été atteint.

“$SYS/broker/messages/received” Le nombre total de messages reçus depuis que le broker a été
démarré.

“$SYS/broker/uptime” Le nombre de secondes écoulées depuis le démarrage.
“$SYS/broker/version” La version du broker.

3.1.2 Arrêt, redémarrage

<callout type=“tip” icon=“true”>Le broker est installé en tant que service. Pour l'arrêter ou le
redémarrer, utiliser les commandes suivantes :</callout>

*.bash

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=1
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=2
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=3
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=4

2026/02/03 23:47 7/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

sudo systemctl stop mosquitto.service
sudo systemctl start mosquitto.service

3.1.3 Tests

<callout type=“info” icon=“true”>Le paquet mosquitto-clients fournit deux commandes,
<html><a href=“https://mosquitto.org/man/mosquitto_sub-1.html”
target=“_blank”>mosquitto_sub</html> pour une souscription et <html><a
href=“https://mosquitto.org/man/mosquitto_pub-1.html”
target=“_blank”>mosquitto_pub</html> pour une publication.</callout>

3.1.3.1 Test sur le RaspBerry Pi (localhost)

Pour tester le bon fonctionnement du broker, nous allons publier le message (payload) “Bonjour” sur
le canal d'information (topic) test/val à l'aide d'un client mosquitto_pub. Ce message sera reçu par
un client mosquitto_sub abonné à test/val.

Abonnement

*.bash

mosquitto_sub -v -h localhost -t test/val

Publication

*.bash

mosquitto_pub -h localhost -t test/val -m "Bonjour"

-v, –verbose : message imprimé sous la forme de sujet.
-h, –host : Spécifie l'hôte auquel se connecter. La valeur par défaut est localhost.
-t, –topic : le sujet MQTT auquel on s'abonne.
-m, –message : Envoie un seul message à partir de la ligne de commande.

Résultat attendu

3.1.3.2 Test sur le réseau local

Ressource : <html><a href=“https://mosquitto.org/man/mosquitto-conf-5.html”
target=“_blank”>Page de manuel de moustique.conf</a</html>

<callout icon=“fa fa-hand-stop-o” color=“red” title=“STOP”>A partir de la version 2 de Mosquitto
seule la connexion sur le réseau local est acceptée par le broker.

https://mosquitto.org/man/mosquitto_sub-1.html
https://mosquitto.org/man/mosquitto_pub-1.html
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=5
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=6
https://mosquitto.org/man/mosquitto-conf-5.html

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

Pour effectuer le test précédent entre un courtier situé sur une machine (PC, Raspberry Pi,etc.) et un
éditeur/abonné situé sur une autre machine (PC, smartphone, etc.) via un réseau local, il est
nécessaire de modifier le fichier de configuration mosquitto.conf situé dans /etc/mosquitto/.
Pour cela :
- Ouvrir le fichier mosquitto.conf
- Ajouter les interfaces à l'aide de l'option listener </callout>

*.bash

Ouvrir le fichier mosquitto.conf
sudo nano /etc/mosquitto/mosquitto.conf

Exemple : connexion au broker situé sur un Raspberry Pi, sur l'hôte local et sur le réseau local via les
interfaces Ethernet et wifi.

Tests réalisés entre un RaspBerry pi et un smartphone

Consulter la page Wiki Réseau - Test d'un broker Mosquitto avec MyMQTT (Android App) pour la mise
en oeuvre du test.

3.2. Sous Windows

Voir ce <html><a href=“http://www.steves-internet-guide.com/install-mosquitto-broker/”
target=“_blank”>lien</html> pour installer le broker Mosquitto sous Windows,

3.3 Sur un NAS Synology

Source : <html><a
href=“https://www.lesalexiens.fr/actualites/tutoriel-installer-mosquitto-mqtt-sur-nas-synology/”
target=“_blank”>Installer le broker MQTT Mosquitto sur NAS Synology (DSM 6.2+) avec
Docker</html>

Le fichier mosquitto.conf se situe dans le dossier /usr/local/mosquitto/var. Se connecter en ssh.
Ouvrir mosquitto.conf avec nano et le compléter comme ci-dessous :

mosquitto.conf

Write process id to a file.
protocol websockets # A ajouter
pid_file /var/packages/mosquitto/target/var/mosquitto.pid

===
Default listener

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=7
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=reseaux:outils:mymqtt
http://www.steves-internet-guide.com/install-mosquitto-broker/
https://www.lesalexiens.fr/actualites/tutoriel-installer-mosquitto-mqtt-sur-nas-synology/
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=8

2026/02/03 23:47 9/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

===
Port to use for the default listener.
port 1883
listener 9001 # A ajouter

4 Sécurité

<callout type=“info” icon=“true”>Cette partie ne sera pas exploitée lors du développement sur un
réseau local dans la salle de classe. A prendre en compte si l'accès au broker se fait via
Internet.</callout>

4.1 Authentification

 Ce paragraphe illustre la mise en sécurité de l'installation étudiée dans la partie “Découverte” de
la page Mise en oeuvre d'un client MQTT sur un ESP8266 feather Huzzah. La mise en sécurité de cette
installation passe par la mise en place d'une authentification. Les clients MQTT doivent s'authentifier
avec un identifiant / mot de passe. La mise en place de cette authentification doit se faire côté
Mosquitto (traitée ci-dessous) et côté client (voir Mise en oeuvre d'un client MQTT sur un ESP8266
feather Huzzah)

Fichier de configuration de Mosquitto
<callout type=“warning” icon=“true”>Par défaut, le fichier de configuration mosquitto.conf d'un
Raspberry Pi, situé dans /etc/mosquitto/, contient :</callout>

mosquitto.conf

Place your local configuration in /etc/mosquitto/conf.d/
#
A full description of the configuration file is at
/usr/share/doc/mosquitto/examples/mosquitto.conf.example

pid_file /var/run/mosquitto.pid
persistence true
persistence_location /var/lib/mosquitto/
log_dest file /var/log/mosquitto/mosquitto.log
include_dir /etc/mosquitto/conf.d

A ajouter à partir de la version 2

listener localhost # actif par défaut mais à ajouter
listener @IP1 # si ajout d'@IP(s)
listener @IP2
etc.

mosquitto.pid : le fichier contenant le numéro de processus du démon Mosquitto permettant

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/lib/exe/detail.php?id=start%3Araspberry%3Amqtt%3A02&media=raspberrypi:linux:security-mqtt.jpg
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=9

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

la gestion du fonctionnement en arrière-plan (mode serveur)
persistence : la directive permettant au serveur de conserver l'état des connexions, des
abonnements et des messages dans un fichier enregistré sur le disque. Ceci permet au serveur
de recharger ces informations en cas de redémarrage.
persistence_location : l'emplacement où doivent être stockées ses informations.
log_dest file : le chemin complet vers le fichier contenant le journal d'activité du serveur.
include_dir : le répertoire contenant d'autres fichiers de configuration à prendre en compte.

<callout type=“warning” icon=“true”>Pour installer l'authentification côté Mosquitto, il n'est pas
nécessaire de modifier le fichier mosquitto.conf. Il suffit de sauvegarder les éléments de configuration
supplémentaires dans le répertoire ciblé par include_dir (ici /etc/mosquitto/conf.d) sous la forme de
fichiers.</callout>

Étape 1. Création d'un fichier de mots de passe
Pour créer un fichier de mots de passe, le paquet mosquitto fournit l'outil mosquitto_passwd. Entrer
la commande ci-dessous :

*.bash

sudo mosquitto_passwd -c /etc/mosquitto/passwd sondes

Le Raspberry pi demande un mot de passe. Entrer mot2passe.

-c crée le fichier
sondes est l'identifiant

En supprimant -c de la commande ci-dessus, il est possible :

de changer le mot de passe d'un identifiant,
d'ajouter une autre entrée au fichier en spécifiant un nouvel identifiant.

Étape 2. Création d'un fichier d'authentification auth.conf

Entrer la commande ci-dessous :

*.bash

sudo touch /etc/mosquitto/conf.d/auth.conf

Ouvrir le fichier avec nano.

*.bash

sudo nano /etc/mosquitto/conf.d/auth.conf

Ajouter le code ci-dessous

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=10
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=11
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=12

2026/02/03 23:47 11/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

*.bash

password_file /etc/mosquitto/passwd
allow_anonymous false # Connexions sans mot de passe non autorisées

password_file permet de spécifier le fichier de mots de passe à
utiliser
allow-anonymous autorise (**true**) ou non (**false**) les connexions
anonymes (sans mot de passe)

Redémarrer le serveur

*.bash

sudo systemctl restart mosquitto.service

Étape 3. Tests
Les tests ci-dessous sont à réaliser lorsque le croquis clientmqttesp8266.ino décrit à la page Mise
en oeuvre d'un client MQTT sur un ESP8266 feather Huzzah a été modifié pour assurer
l'authentification de la connexion.

Publication d'un message sur un topic avec une connexion sécurisée

La commande de la LED de la carte ESP8266 peut se faire comme ci-dessous :

*.bash

mosquitto_pub -h localhost -u "sondes" -P "mot2passe" -t ctrlled -m 1

ou

*.bash

mosquitto_pub -h localhost -u "sondes" -P "mot2passe" -t ctrlled -m 0

Abonnement à un topic avec une connexion authentifiée

L'affichage dans une console sur le Raspberry Pi de la valeur envoyée par l'ESP8266 toutes les 5s
peut se faire comme ci-dessous :

*.bash

mosquitto_sub -v -h localhost -u "sondes" -P "mot2passe" -t
maison/+/valeur

Exemple de résultat

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=13
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=14
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=arduino:clientmqttesp8266
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=15
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=16
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=17

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

4.2 Chiffrage de la connexion

<html>A faire</html>

5 QoS

<callout type=“primary” icon=“true”>Mosquitto implémente les trois qualités de service.</callout>

6. MQTT sur WebSockets avec Mosquitto

6.1 Pourquoi utiliser MQTT sur Websockets ?

 <callout type=“warning” icon=“true”>MQTT sur Websockets vous permet de recevoir des
données MQTT directement dans un navigateur Web.</callout>

Le navigateur Web peut devenir l'INTERFACE pour afficher les données MQTT. Le support JavaScript
de MQTT Websocket pour les navigateurs Web est fourni par le client JavaScript.

6.2 MQTT sur Websockets vs MQTT.

6.2.1 Présentation

Dans le cas de MQTT sur Websockets, la connexion websockets constitue un canal externe pour le
protocole MQTT. Le courtier MQTT place le paquet MQTT dans un paquet websockets et l'envoie au
client. Le client extrait le paquet MQTT du paquet websockets puis le traite comme un paquet MQTT
normal.

<callout type=“primary” icon=“true”>La version 1.5.7 du broker Mosquitto pour Raspberry Pi OS
est compatible avec les Websockets. Il faut configurer le fichier mosquitto.conf pour que la
communication s'établisse entre le broker et un client.</callout>

6.2.2 Configuration du fichier mosquitto.conf

MQTT sur Websockets utilise généralement le port 9001 mais il n'est pas fixé.

Compléter le fichier mosquitto.conf comme ci-dessous

mosquitto.conf

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=18

2026/02/03 23:47 13/14 installer MQTT bis --- A tester ----

Castel'Lab le Fablab MJC de Château-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/

Place your local configuration in /etc/mosquitto/conf.d/
#
A full description of the configuration file is at
/usr/share/doc/mosquitto/examples/mosquitto.conf.example
port 1883 # A ajouter
listener 9001 # A ajouter
protocol websockets # A ajouter
pid_file /var/run/mosquitto.pid

Cela crée un écouteur supplémentaire à l'aide de websockets et du port 9001.

Redémarrer le serveur

*.bash

sudo systemctl restart mosquitto.service

6.2.3 Test de Websocket

 Pour tester les websockets, nous avons besoin d'un client prenant en charge les websockets. Nous
utiliserons le client Javascript Paho décrit sur la page Créer un client MQTT avec Eclipse Paho.

7. Outils

7.1 MyMQTT : un client pour Androïd

En installant un client pour Androïd tel que MyMQTT sur un smartphone, on pourra facilement
vérifier la capacité du broker à recevoir ou à émettre des messages.

Fonctionnalités
Connection à un courtier MQTT v3.1 (facultatif avec nom d'utilisateur et mot de passe)
Abonnement à des topics
Publication de messages
Enregistrement des messages

Consulter la page Wiki Réseau - Test d'un broker Mosquitto avec MyMQTT (Android App) pour sa mise
en oeuvre.

7.2 MQTTlens : un client pour navigateur

 MQTTlens est une application Google Chrome, qui se connecte à un courtier MQTT et peut

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:mqtt:02&codeblock=19
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=web:eclipsepaho
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=reseaux:outils:mymqtt

Last
update:
2024/03/28
20:15

start:raspberry:mqtt:02 https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/03 23:47

s'abonner et publier sur des sujets MQTT.

Consulter la page Wiki Réseau - Test d'un broker Mosquitto avec MQTTlens pour sa mise en oeuvre.

1)

Dans un réseau informatique, un client est le logiciel qui envoie des demandes à un serveur.
2)

Un serveur informatique est un dispositif informatique (matériel ou logiciel) qui offre des services, à
un ou plusieurs clients.
3)

Serveur ou courtier des messages. Il se charge de les aiguiller vers les différents clients qui se sont
abonnés.
4)

Abonné à un ou plusieurs topics.
5)

Editeur de messages.
6)

Sujet ou canal d'information. Dans MQTT, le mot topic fait référence à une chaîne UTF-8 que le
courtier utilise pour filtrer les messages des clients.
7)

Les messages possèdent un payload, c'est à dire, une propriété contenant les informations les plus
utiles.
8)

Caractère générique utilisé dans le mécanisme de filtrage des messages.
9)

La qualité de service (QDS) ou quality of service (QoS) est la capacité à véhiculer dans de bonnes
conditions un type de trafic donné.

From:
https://www.magenealogie.chanterie37.fr/www/fablab37110/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

Last update: 2024/03/28 20:15

https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=reseaux:outils:mqttlens
https://www.magenealogie.chanterie37.fr/www/fablab37110/
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:mqtt:02&rev=1711653319

	installer MQTT bis --- A tester ----
	Raspberry Pi - Installer un broker (serveur) MQTT Mosquitto
	1. MQTT (généralités)
	1.1 Historique
	1.2 Principes
	1.2.1 Organisation et communication
	1.2.2 Les topics
	1.2.3 Sécurité
	1.2.4 Qualité de service (QoS)

	1.3 Structure d'un paquet MQTT

	2. Le broker Mosquitto
	3. Installation et mise en oeuvre basique
	3.1 Sur un Raspberry Pi
	3.1.1 Installation
	3.1.2 Arrêt, redémarrage
	3.1.3 Tests
	3.1.3.1 Test sur le RaspBerry Pi (localhost)
	3.1.3.2 Test sur le réseau local

	3.2. Sous Windows
	3.3 Sur un NAS Synology

	4 Sécurité
	4.1 Authentification
	4.2 Chiffrage de la connexion

	5 QoS
	6. MQTT sur WebSockets avec Mosquitto
	6.1 Pourquoi utiliser MQTT sur Websockets ?
	6.2 MQTT sur Websockets vs MQTT.
	6.2.1 Présentation
	6.2.2 Configuration du fichier mosquitto.conf
	6.2.3 Test de Websocket

	7. Outils
	7.1 MyMQTT : un client pour Androïd
	7.2 MQTTlens : un client pour navigateur

