2026/02/05 00:36 1/5 Les Timers

Les Timers

Timers sur ESP32

Fondamentalement, un Timer (minuterie) est une horloge, qui est utilisée pour mesurer et controler
les événements temporels. offrant une temporisation précise. La plupart des microcontroéleurs ont des
minuteries intégrées. Les minuteries des microcontréleurs ne sont pas seulement utilisées pour
générer des retards, mais sont également utilisées comme compteur. Cette caractéristique du
temporisateur est utilisée pour de nombreuses applications. Les minuteries du microcontréleur sont
controlées par des registres de fonctions spéciales qui sont affectés aux opérations de minuterie.

Une interruption est un événement externe qui interrompt le programme en cours et exécute une
routine de service d'interruption (ISR).

Une fois I'ISR terminé, le programme en cours se poursuit avec l'instruction suivante. Et les
interruptions du temporisateur sont les interruptions générées par le temporisateur. Voici I'exemple
montrant comment configurer le temporisateur pour générer périodiquement une interruption et
comment la gérer. ESP32 a deux groupes de minuteries, chacun avec deux minuteries matérielles a
usage général. Tous les temporisateurs sont basés sur des compteurs 64 bits et des prédiviseurs 16
bits. Le prédiviseur est utilisé pour diviser la fréquence du signal de base (généralement 80 MHz), qui
est ensuite utilisé pour incrémenter ou décrémenter le compteur de la minuterie. La variable de
compteur sera partagée entre la boucle principale et I'ISR, puis elle doit étre déclarée avec le mot-clé
volatile .

volatile int interruptCounter ;

Nous aurons un compteur supplémentaire pour suivre le nombre d'interruptions déja survenues.
int totallInterruptCounter ;

Afin de configurer le timer, nous aurons besoin d'un pointeur vers une variable de type hw_timer t.
hw _timer t * timer = NULL;

Enfin, nous devrons déclarer une variable de type portMUX_TYPE qui nous servira a nous occuper de
la synchronisation entre la boucle principale et I'ISR.

portMUX TYPE timerMux = portMUX INITIALIZER UNLOCKED;

Pour initialiser le timer a I'aide d'une fonction timerbegin , cette fonction recoit le numéro du timer
que I'on souhaite utiliser (de 0 a 3, puisque nous avons 4 timers matériels), la valeur du prescaler et
un drapeau indiquant si le compteur doit compter (vrai) ou vers le bas (faux).

timer = timerBegin(0, 80, vrai);

Pour cet exemple, nous utiliserons la premiere minuterie et passerons vrai au dernier parametre,
donc le compteur compte la fréquence du signal de base utilisé par les compteurs ESP32 est de 80
MHz . Si nous divisons cette valeur par 80 (en utilisant 80 comme valeur du prescaler), nous
obtiendrons un signal avec une fréquence de 1 MHz qui incrémentera le compteur de la minuterie 1

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/



Last
update:
2023/01/27
16:08

start:arduino:esp32:les_timers https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:esp32:les_timers&rev=1650783689

000 000 fois par seconde.

Avant d'activer le temporisateur, nous devons le lier a une fonction de traitement, qui sera exécutée
lorsque I'interruption sera générée. Cela se fait avec un appel a la fonction timerAttachinterrupt .

timerAttachInterrupt(timer, &onTimer, true);

Cette fonction recoit en entrée un pointeur vers le timer initialisé, que nous avons stocké dans notre
variable globale, I'adresse de la fonction qui va gérer l'interruption et un drapeau indiquant si
I'interruption a générer est front (true) ou level (false) . Pour cet exemple, nous passerons notre
variable de minuterie globale en premiére entrée, en deuxieme I'adresse d'une fonction appelée
onTimer que nous spécifierons plus tard, et en troisieme la valeur true , donc l'interruption générée
est de type edge.

timerAlarmWrite(timer, 1000000, true);

fonction timerAlarmWrite pour spécifier la valeur du compteur dans laquelle I'interruption du
temporisateur a été générée. Donc, pour cet exemple, on suppose que I'on veut générer une
interruption chagque seconde, et on passe donc la valeur de 1 000 000 microsecondes, qui est égale a
1 seconde. Le troisieme argument que nous passerons true , donc le compteur se rechargera et donc
I'interruption sera périodiquement générée. Pour terminer la fonction de configuration en activant un
appel a timerAlarmEnable(timer);

Main loop

La boucle principale (main loop) sera I'endroit ou nous gérons réellement l'interruption de la
minuterie, apres qu'elle ait été signalée par I' ISR (routine de service d'interruption également
appelée gestionnaire d'interruption) . Pour vérifier la valeur du compteur d'interruptions, nous allons
donc vérifier si lavariable du compteur d'interruptions est supérieur a zéro et si c'est le cas, nous
entrerons le code de gestion des interruptions. La, la premiére chose que nous allons faire est de
décrémenter ce compteur, signalant que I'interruption a été acquittée et sera traitée.

l.ino

interruptCounter

portENTER CRITICAL (&timerMux
interruptCounter
portEXIT CRITICAL(&timerMux

totalInterruptCounter

Serial.print("An interrupt as occurred. Total number:
Serial.println(totalInterruptCounter

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/05 00:36


https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:les_timers&codeblock=0

2026/02/05 00:36 3/5 Les Timers

La fonction ISR doit étre une fonction qui renvoie void et ne recoit aucun argument. La routine de
gestion des interruptions doit avoir I' attribut IRAM_ATTR , pour que le compilateur place le code dans
IRAM. De plus, les routines de gestion des interruptions ne doivent appeler que les fonctions
également placées dans I' IRAM.

2.ino

void IRAM ATTR onTimer

portENTER CRITICAL ISR(&timerMux
interruptCounter

portEXIT CRITICAL_ ISR(&timerMux

Puisque cette variable est partagée avec I'ISR, nous le ferons dans une section critique, que nous
spécifions en utilisant une macro portENTER_CRITICAL et une macro portEXIT_CRITICAL . Ces deux
appels recoivent en argument I'adresse de notre variable globale portMUX_TYPE . La gestion réelle
des interruptions consistera simplement a incrémenter le compteur avec le nombre total
d'interruptions survenues depuis le début du programme et a I'imprimer sur le port série.

5 comg =y
Send

&ts Jun 8 2016 00:22:57

rat:lxl [POWEROH RESET) . boot:0xl3 (3PI_FAST FLASH BODOT)

configeip: 0, SFIWP:O0xee

elk drw:Ox00,q dev:0x00,d_drv:0x00, cal_drv:0x00,hd_dew: 0x00, wp dev: 0200
mode:DI0, clock diw:l

load: Ox3FEL001E, lam:d

load: 0x3fLf001c, len: 9546

lgad: 0x4007E000, l&m:0

load: 0x4007E000, len: 13076

entry O0x4007EaAD

Al 1NTEITUPT &’ oocurred. lotal mumber:

An incerrupr as osccurred. Total number: 2
Al inTEIrTupt a’ occcurred. Total number: 2
An imeerrupe a8 securred. Tortal mumber: 4
All inTeITupt ad ootcurred. Total number: S
An inEEPROpE &S Ssecurred. Total numbsr: &
Al inTeITUpt a3 occurred. Total number: 7
An incerrupt as osccurred. Total number: B -

Butoscrol] Holneendng » | 115200 bawud ~

ESP32Timerinterrupt Library

ESP32TimerInterrupt Library
Pourquoi avons-nous besoin de cette bibliotheque ESP32Timerinterrupt
Caractéristiques

Cette bibliotheque vous permet d'utiliser “Interrupt from Hardware Timers” sur une carte basée sur
ESP32.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/


https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:arduino:esp32:les_timers&codeblock=1
https://github.com/khoih-prog/ESP32TimerInterrupt

Last
update:
2023/01/27
16:08

start:arduino:esp32:les_timers https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:esp32:les_timers&rev=1650783689

Comme les temporisateurs matériels sont des atouts rares et tres précieux de n'importe quelle carte,
cette bibliotheque vous permet désormais d'utiliser jusqu'a 16 temporisateurs basés sur ISR, tout en
ne consommant qu'un seul temporisateur matériel . L'intervalle des temporisateurs est tres long (
ulong millisecs ).

Désormais, avec ces nouveaux temporisateurs basés sur 16 ISR, I'intervalle maximal est
pratiguement illimité (limité uniquement par de longues millisecondes non signées) tandis que la
précision est presque parfaite par rapport aux temporisateurs logiciels.

La caractéristique la plus importante est qu'il s'agit de minuteries basées sur ISR. Par conséquent,
leurs exécutions ne sont pas bloguées par des fonctions/taches au mauvais comportement . Cette
fonctionnalité importante est absolument nécessaire pour les taches critiques.

L' exemple ISR _Timer_Complex démontrera la précision presque parfaite par rapport aux
temporisateurs logiciels en imprimant les millisecondes écoulées réelles de chaque type de
temporisateurs.

Etant des minuteries basées sur ISR, leurs exécutions ne sont pas bloquées par des fonctions/taches
qui se comportent mal, telles que la connexion aux services WiFi, Internet et Blynk. Vous pouvez
également avoir plusieurs (up to 16)minuteries a utiliser.

Cette fonctionnalité importante non bloquée est absolument nécessaire pour les taches critiques.

Vous verrez que le logiciel blynkTimer est bloqué pendant que le systeme se connecte au WiFi /
Internet / Blynk, ainsi qu'en bloquant la tache dans loop(), en utilisant la fonction delay() comme
exemple. Le temps écoulé est alors tres imprécis Pourquoi I'utilisation d'une interruption de minuterie
matérielle basée sur ISR est préférable

Imaginez que vous ayez un systeme avec une fonction critique , mesurant le niveau d'eau et
contrélant la pompe de puisard ou faisant quelque chose de beaucoup plus important. Vous utilisez
normalement une minuterie logicielle pour interroger, ou méme placer la fonction dans loop(). Mais
que se passe-t-il si une autre fonction bloque la boucle() ou la configuration().

Ainsi, votre fonction pourrait ne pas étre exécutée et le résultat serait désastreux.

Vous préféreriez que votre fonction soit appelée, quoi qu'il arrive avec d'autres fonctions (boucle
occupée, bogue, etc.).

Le bon choix consiste a utiliser une minuterie matérielle avec interruption pour appeler votre fonction.

Ces temporisateurs matériels, utilisant I'interruption, fonctionnent toujours méme si d'autres fonctions
bloguent. De plus, ils sont beaucoup plus précis (certainement en fonction de la précision de la
fréquence d'horloge) que les autres temporisateurs logiciels utilisant millis() ou micros(). Cela est
nécessaire si vous avez besoin de mesurer certaines données nécessitant une meilleure précision.

Les fonctions utilisant des minuteries logicielles normales, reposant sur loop() et appelant millis(), ne
fonctionneront pas si loop() ou setup() est bloqué par certaines opérations. Par exemple, certaines
fonctions se bloquent lors de la connexion au WiFi ou a certains services.

Le hic, c'est que votre fonction fait maintenant partie d'un ISR (Interrupt Service Routine), et doit étre
maigre / méchant, et suivre certaines regles. Plus a lire sur :

https://www.magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/05 00:36



2026/02/05 00:36 5/5 Les Timers

HOWTO Attach Interrupt

From:
https://www.magenealogie.chanterie37.fr/www/fablab37110/ - Castel'Lab le Fablab M)JC de Chateau-Renault

Permanent link:
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:esp32:les_timers&rev=1650783689 Lu

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.magenealogie.chanterie37.fr/www/fablab37110/


https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.magenealogie.chanterie37.fr/www/fablab37110/
https://www.magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:esp32:les_timers&rev=1650783689

	Les Timers
	Main loop
	ESP32TimerInterrupt Library
	Pourquoi avons-nous besoin de cette bibliothèque ESP32TimerInterrupt
	Caractéristiques




